321,812 research outputs found

    A morphometric analysis of vegetation patterns in dryland ecosystems

    Get PDF
    Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems

    Vegetation and environmental patterns on soils derived from Hawkesbury Sandstone and Narrabeen substrata in Ku-ring-gai Chase National Park, New South Wales

    Get PDF
    [Abstract]: The vegetation patterns in the Central Coast region of New South Wales have been extensively studied with respect to single environmental variables, particularly soil nutrients. However, few data are available on the effects of multiple environmental variables. This study examines the relationships between vegetation and multiple environmental variables in natural vegetation on two underlying rock types, Hawkesbury sandstone and Narrabeen group shales and sandstones, in Ku-ring-gai Chase National Park, Sydney. Floristic composition and 17 environmental factors were characterized using duplicate 500 m2 quadrats from fifty sites representing a wide range of vegetation types. The patterns in vegetation and environmental factors were examined through multivariate analyses: indicator species analysis was used to provide an objective classification of plant community types, and the relationships between vegetation and environmental factors within the two soil types were examined through indirect and direct gradient analyses. Eleven plant communities were identified, which showed strong agreement with previous studies. The measured environmental factors showed strong correlations with vegetation patterns: within both soil types, the measured environmental variables explained approximately 32 - 35% of the variation in vegetation. No single measured environmental variable adequately described the observed gradients in vegetation; rather, vegetation gradients showed strong correlations with complex environmental gradients. These complex environmental gradients included nutrient, moisture and soil physical and site variables. These results suggest a simple 'nutrient' hypothesis regarding vegetation patterns in the Central Coast region is inadequate to explain variation in vegetation within soil types

    Bistability and regular spatial patterns in arid ecosystems.

    Get PDF
    A variety of patterns observed in ecosystems can be explained by resource–concentration mechanisms. A resource–concentration mechanism occurs when organisms increase the lateral flow of a resource toward them, leading to a local concentration of this resource and to its depletion from areas farther away. In resource–concentration systems, it has been proposed that certain spatial patterns could indicate proximity to discontinuous transitions where an ecosystem abruptly shifts from one stable state to another. Here, we test this hypothesis using a model of vegetation dynamics in arid ecosystems. In this model, a resource– concentration mechanism drives a positive feedback between vegetation and soil water availability. We derived the conditions leading to bistability and pattern formation. Our analysis revealed that bistability and regular pattern formation are linked in our model. This means that, when regular vegetation patterns occur, they indicate that the system is along a discontinuous transition to desertification. Yet, in real systems, only observing regular vegetation patterns without identifying the pattern-driving mechanism might not be enough to conclude that an ecosystem is along a discontinuous transition because similar patterns can emerge from different ecological mechanisms

    Minimal mechanisms for vegetation patterns in semiarid regions

    Get PDF
    The minimal ecological requirements for formation of regular vegetation patterns in semiarid systems have been recently questioned. Against the general belief that a combination of facilitative and competitive interactions is necessary, recent theoretical studies suggest that, under broad conditions, nonlocal competition among plants alone may induce patterns. In this paper, we review results along this line, presenting a series of models that yield spatial patterns when finite-range competition is the only driving force. A preliminary derivation of this type of model from a more detailed one that considers water-biomass dynamics is also presented. Keywords: Vegetation patterns, nonlocal interactionsComment: 8 pages, 4 figure

    Vegetation pattern formation in semiarid systems without facilitative mechanisms

    Get PDF
    Regular vegetation patterns in semiarid ecosystems are believed to arise from the interplay between long-range competition and facilitation processes acting at smaller distances. We show that, under rather general conditions, long-range competition alone may be enough to shape these patterns. To this end we propose a simple, general model for the dynamics of vegetation, which includes only long-range competition between plants. Competition is introduced through a nonlocal term, where the kernel function quantifies the intensity of the interaction. We recover the full spectrum of spatial structures typical of vegetation models that also account for facilitation in addition to competition.Comment: 21 pages, 3 figure

    Trees in a grazing landscape: vegetation patterns in sheep-grazing agro-ecosystems in Southern Queensland

    Get PDF
    The modification of natural woodland tree densities through tree removal or clearing has been used by landholders to increase native grass production for livestock grazing. This paper describes studies that aim to determine if vegetation management by graziers affect floristic composition, species richness and plant cover (including production attributes) in the Traprock wool-producing region of southern Queensland, Forty-seven sites were sampled across the study area according to vegetation type (ironbark/gum woodland and box woodland), density of mature trees (low: 6 trees/ha, medium: 6-20 trees/ha, and high >20 trees/ha), and the presence or absence of woody regrowth in the understorey to determine vegetation patterns, A subset of 18 sites was selected to establish grazing exclusion experiments in both vegetation types under varying mature tree densities. This paper describes the general patterns in vegetation under differing mature tree densities and provides preliminary results of the 12-month grazing exclusion experiments

    A topographic mechanism for arcing of dryland vegetation bands

    Full text link
    Banded patterns consisting of alternating bare soil and dense vegetation have been observed in water-limited ecosystems across the globe, often appearing along gently sloped terrain with the stripes aligned transverse to the elevation gradient. In many cases these vegetation bands are arced, with field observations suggesting a link between the orientation of arcing relative to the grade and the curvature of the underlying terrain. We modify the water transport in the Klausmeier model of water-biomass interactions, originally posed on a uniform hillslope, to qualitatively capture the influence of terrain curvature on the vegetation patterns. Numerical simulations of this modified model indicate that the vegetation bands change arcing-direction from convex-downslope when growing on top of a ridge to convex-upslope when growing in a valley. This behavior is consistent with observations from remote sensing data that we present here. Model simulations show further that whether bands grow on ridges, valleys, or both depends on the precipitation level. A survey of three banded vegetation sites, each with a different aridity level, indicates qualitatively similar behavior.Comment: 26 pages, 13 figures, 2 table

    Empirical analysis of vegetation dynamics and the possibility of a catastrophic desertification transition

    Full text link
    The process of desertification in the semi-arid climatic zone is considered by many as a catastrophic regime shift, since the positive feedback of vegetation density on growth rates yields a system that admits alternative steady states. Some support to this idea comes from the analysis of static patterns, where peaks of the vegetation density histogram were associated with these alternative states. Here we present a large-scale empirical study of vegetation dynamics, aimed at identifying and quantifying directly the effects of positive feedback. To do that, we have analyzed vegetation density across  2.5×106 km2~2.5 \times 10^6 \ \rm{km}^2 of the African Sahel region, with spatial resolution of 30×3030 \times 30 meters, using three consecutive snapshots. The results are mixed. The local vegetation density (measured at a single pixel) moves towards the average of the corresponding rainfall line, indicating a purely negative feedback. On the other hand, the chance of spatial clusters (of many "green" pixels) to expand in the next census is growing with their size, suggesting some positive feedback. We show that these apparently contradicting results emerge naturally in a model with positive feedback and strong demographic stochasticity, a model that allows for a catastrophic shift only in a certain range of parameters. Static patterns, like the double peak in the histogram of vegetation density, are shown to vary between censuses, with no apparent correlation with the actual dynamical features
    • …
    corecore